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Abstract:  Historically, spherical geometry has developed mainly on the terrestrial globe and the celestial globe. In this 
paper, we will introduce the third globe “visual globe” centered at our eyes.  When we see the external world, we are 
under an illusion that our view screen is a plane. Locally it is true, however, globally it is more natural to think that our 
view screen is a sphere centered at our eyes. In this concept, we will study “visual angles” of a rectangle in the space. 
An angle in the space changes its visual angle according to our viewpoint. This visual angle is easily measured on the 
visual globe and there is a very simple relation among the visual angles of a rectangle. We will also realize the visual 
angle on a two dimensional Euclidean plane along with the dynamic geometry software Cabri II Plus. Furthermore, we 
will find out that the simple relation above is also true in hyperbolic geometry.  
      
1. Introduction 
 

An angle in the three dimensional Euclidean space changes its appearance according to our 
viewpoint. This appearance is also one of information about a certain relation between the angle 
and the viewpoint [5-7]. To analyze this information, we will introduce two ideas: visual angle and 
visual globe. Intuitively, the visual globe is our view screen centered at the viewpoint, and on this 
globe we can measure visual angles as the angle of a spherical triangle. In this paper, we will focus 
on the four visual angles of a rectangle in the space. Using spherical trigonometry, we will find out 
a simple relation among them.  

The definition of visual angle and a representation of the visual angle on the visual globe are 
described in Section 2. We study the relation among the visual angles of a rectangle in Section 3. In 
Section 4, we will introduce how to realize visual angles in a plane along with a dynamic geometry 
software. The stereographic projection plays an important role. This realization proposes an 
educational approach to spherical geometry without difficult calculation such as spherical 
trigonometry. Furthermore, we will try to extend the idea of visual angle to hyperbolic geometry in 
Section 5. The relation among the visual angles of a rectangle is also true. Using the Poincare 
model, we can easily confirm it by a simple construction.  
 
 
2. Visual Angle on the Visual Globe 
 

In this section, we will introduce two important ideas: visual angle and visual globe. Let us start 
from the definition of visual angle. 
 
Definition 2.1(Visual Angle)  Let be a fixed angle determined by three points A, B and C in 
the three dimensional Euclidean space E

BAC∠
3 (Figure 2.1). The visual angle from a viewpoint O is 

defined as the dihedral angle of the two faces OAB and OAC of the tetrahedron OABC.  
 
The following proposition shows that the visual globe is useful to measure visual angles. 



 
 

Figure 2.1  Visual angle on the visual globe. 
 

Proposition 2.1(Visual Globe)  Let A’, B’ and C’ be the projected points of A, B and C from the 
viewpoint O onto the (unit) sphere centered at O (Figure 2.1). Then the visual angle of BAC∠ is 
equal to the angle of the spherical triangle 'A∠ ''' CBA∆ . 
 
Proof.  Let V be a vector tangent to the arc A’B’ at A’, and W  a vector tangent to A’C’ at A’. The 
angle between V and W  is equal to . On the other hand, since both vectors 'A∠ V and W are 
perpendicular to the line OA, the angle between V and W  is also equal to the dihedral angle of the 
two faces OAB and OAC.                                                                                                                    
 
In this way, it turns out that it is better to regard our view screen as a sphere centered at our 
viewpoint. Of course, this screen is locally Euclidean and when we look outside in the small area, it 
is enough to regard our view screen as a plane. This visual globe is the third motivation for 
spherical geometry. When we look up the ceiling in the room, each corner has the visual angle 
greater than . Why the sum of four angles of a rectangle is greater than ? The reason is 
simple, because our view screen is not a plane but a sphere. In the following argument, we use only 
one spherical trigonometry, that is, the spherical cosine law for angles ([4] p.59): 

°90 °360

aCBCBA cossinsincoscoscos +−=  
where a is the opposite side of the vertex A in the spherical triangle ABC∆ .  
 
 
3. Visual Angles of Rectangle 
 

In this section, let us consider the relation among four visual angles of a rectangle in the space. 
Figure 3.1 shows the central projection of a rectangle in the space onto the visual globe. Without 
loss of generality, let us assume that a rectangle is arranged on the plane z=constant and two pairs 
of opposite sides are parallel to x-axis and y-axis, respectively. Then four projected sides are great 
circles on the sphere passing through X=(1,0,0), –X=(–1,0,0), Y=(0,1,0) or –Y=(0, –1,0). These 
points correspond to the vanishing points of four sides.  



 
 

Figure 3.1  Central projection of a rectangle on the visual globe. 
 
Theorem 3.1(Visual Angles of Rectangle)  Four visual angles A’, B’, C’ and D’ of a rectangle 
ABCD in the space satisfy the following simple relation: 

'cos'cos'cos'cos DBCA = . 
 
Proof.  Proposition 2.1 enables us to consider the visual angles on the visual globe as in Figure 3.1. 
Note that two great circles A’B’ and C’D’ pass through X and –X. In the same way, two great 
circles B’C’ and D’A’ pass through Y and –Y (see, Figure 3.2). Let 
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Figure 3.2  Orthogonal projection of a spherical quadrangle from the North Pole. 



Appling the spherical cosine law for angles to the spherical triangle A’XY, 
XYA cossinsincoscos'cos δαδα +−= . 

Since 2/π=XY , 
δα coscos'cos −=A . 

In the same way, the following four equations are derived in total: 

.coscos'cos,coscos'cos
,coscos'cos,coscos'cos

γδβγ
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Now the equation '  is trivial.  This completes the proof.                       cos'cos'cos'cos DBCA =
 
Remark 3.1  The sum of four visual angles of a rectangle represents the ratio of occupied field of 
vision to the visual globe, that is ([3] pp.278-279, [4] p.51): 

(the field of vision of a rectangle ABCD)= π2'''' −+++ DCBA . 
For example, in the case of a huge rectangle, all visual angles are nearly equal to π , so the field of 
vision is almost π2 , that is, the area of the hemisphere. On the other hand, in the case that a 
rectangle is very small for the observer, the sum of four visual angles is nearly equal to π2 , so the 
field of vision is nearly equal to 0.  
 
 
4. Realization of Visual Angle in the Plane 
 
    In this section, we will introduce a simple method how to realize visual angle in the plane. We 
cannot measure the exact visual angle by the orthogonal projected image as in Figure 3.2. To 
realize the exact visual angle, we use the stereographic projection from the South Pole to the xy-
plane. This projection has very important properties: conformality and circle-to-circle 
correspondence. As in Figure 4.1, four projected great circles are circles (arcs) passing through 
vanishing points X, –X, Y and –Y on the equator. These four vanishing points are fixed under the 
stereographic projection. Drawing arbitrary four arcs passing through four points X, –X, Y and –Y, 
we can easily check the relation 'cos'cos'cos'cos DBCA =  by measuring the four angles A’, B’, C’ 
and D’ in the plane.   

 
 

Figure 4.1  Stereographic projection of a spherical quadrangle. 



5. Geodesic Rectangle in Hyperbolic Geometry 
 
     In this section, we will try to apply the result above to another geometry, hyperbolic geometry. 
To do this, let us introduce an idea of geodesic rectangle.  
 
Definition 5.1(Geodesic Rectangle)  A quadrangle ABCD is called a Geodesic Rectangle if and 
only if there are two orthogonal geodesics  and  such that 1g 2g 211 ,, gBCgCDgAB ⊥⊥⊥  
and .  2gDA ⊥
 
Remark 5.1  In Euclidean geometry, a rectangle is a geodesic rectangle, however, two orthogonal 
geodesics are not unique.  
 
The following theorem characterizes geodesic rectangle in spherical geometry.  
 
Theorem 5.1(Geodesic Rectangle in S2)  Let A, B, C and D be four non-collinear points in S2. A 
quadrangle ABCD in S2 is a geodesic rectangle if and only if DBCA coscoscoscos = . 
 
Proof.  If a quadrangle ABCD in S2 is a geodesic rectangle, we can set up a system of coordinates 
with the intersection of orthogonal geodesics at the North Pole as in Figure 3.2. Using the same 
technique in the proof of Theorem 3.1, it is easy to show that a geodesic rectangle satisfies 

.  DBCA coscoscoscos =
To prove the converse, let us show that there exists two orthogonal geodesics as in Definition 5.1. 
Let P be the nearer point to D of  and Q the nearer point to D of . First, let us 
show 

CDAB ∩ DABC ∩
2/π=PQ . In fact, by the law of cosines for angles, 
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where APQ∠=α , DPQ∠=β , DQP∠=γ , CQP∠=δ and PQ=l . The equation 
 and a direct computation imply that DBCA coscoscoscos = 0)sin()sin(cos =−− γδβαl , that is 

2/π=PQ . Take a point R as one of poles of the geodesic PQ, then the spherical triangle PQR is a 
right regular spherical triangle. Regarding Q as the North pole and PR as the equator, the longitude 
DA passing through Q is perpendicular to the equator PR. In this way, it is found that PR and QR 
are two orthogonal geodesics of the quadrangle ABCD. This completes the proof.                        
 
Now, let us consider geodesic rectangle in hyperbolic geometry H2. Here just recall the following 
proposition by Lambert without proof (see, [1] pp. 156-157). 
 
Proposition 5.1(Lambert quadrilateral)  Let OABC be a quadrangle in H2. If  2/π=== CAO  
(Figure 5.1), then  

OCOAB sinhsinhcos = . 
 
Remark 5.2  In spherical geometry, there is a similar equation. Let OABC be a quadrangle in the 
unit sphere S2. If  2/π=== CAO , then  

OCOAB sinsincos −= . 
This fact is directly derived from the proof of Theorem 3.1.  
 



 
Figure 5.1  Lambert quadrilateral. 

 
 

Theorem 5.2(Geodesic Rectangle in H2)  If a quadrangle ABCD in H2 is a geodesic rectangle, 
then four angles satisfy the following simple relation: 

DBCA coscoscoscos = . 
 
Proof.  We can see that a geodesic rectangle is composed of four Lambert quadrilaterals as in 
Figure 5.2. Let 1212 ,,, gDASgCDRgBCQgABP ∩=∩=∩=∩=  and . Applying 
Proposition 5. 1 to each Lambert quadrilateral, one has  

21 ggO ∩=

.sinhsinhcos,sinhsinhcos
,sinhsinhcos,sinhsinhcos
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Now the equation  is trivial.  This completes the proof.                       DBCA coscoscoscos =
 
 

 
 

Figure 5.2  Geodesic rectangle in the Poincare model. 
 

 
In this way, the simple idea of visual angle leads us to not only spherical geometry but also 
hyperbolic geometry. In addition, it turns out that spherical and hyperbolic geometries are 
connected by the idea of geodesic rectangles. At the end of this paper, let us introduce a few 
interesting properties between spherical and hyperbolic geometries from the aspect of 
complementary angle.  



Example 5.1(Complementary Angles in the Circle)  Let A be an arbitrary point in the unit circle 
as in Figure 5.3. First, regarding this point A as a stereographic projected point on the unit sphere S2, 
draw two arcs XA(–X) and YA(–Y) where X=(1,0), –X=(–1,0), Y=(0,1) and –Y=(0, –1). Let α  be 
the angle between the arcs XA and YA. In the next, regarding the point A as a point in the Poincare 
model of H2, draw two geodesics AP and AQ perpendicular to X(–X) and Y(–Y) , respectively. Let 
β  be the angle between the arcs AP and AQ. Then two angles α  and β  always satisfy that 

πβα =+ . One can easily check this property by construction. 
 
 

 
 

Figure 5.3  Complementary angles in spherical and hyperbolic geometries. 
 
 

Example 5.2(Complementary Geodesic Rectangles)  For an arbitrary geodesic rectangle ABCD 
in S2, there exists a geodesic rectangle A*B*C*D* in H2 such that A+A*=B+B*=C+C*=D+D*= 
π  as in Figure 5.4. The areas of these two rectangles are equal. In fact,  

 

 
 

Figure 5.4  Complementary geodesic rectangles. 
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The construction of complementary geodesic rectangle is a little bit complicated. Figure 5.5(left) 
shows a part of Figure 5.4. The arc AD is a geodesic of S2 perpendicular to x-axis (one of 
orthogonal geodesics) at S. On the other hand, the arc A*D* is a corresponding geodesic of H2 

perpendicular to x-axis at H. The idea is to make the point H in H2 from S in S2 such that 
. Note that OS and OH are measured by spherical and hyperbolic metrics, 

respectively. If we identify R
OHOS sinhsin =

2 with C, these metrics are given as ([2] p. 29 and p. 60)  
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therefore, 21
2sin

a
aOS

+
=  and 21

2sinh
b
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−
= . The equation OHOS sinhsin = implies that  
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Figure 5.5(right) shows the construction of H from S : 
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Using this technique, we can easily construct a pair of complementary geodesics.  
 
 

 
 

Figure 5.5  Construction of H in H2 from S in S2. 



6. Conclusion 
 
     In this paper, we have proposed one of natural approaches to not only spherical geometry but 
also hyperbolic geometry. Visual angle is the start point. Visual globe is our view screen and the 
visual angle is measured on this sphere. Four visual angles of a rectangle in the space have a simple 
relation, which is extended to hyperbolic geometry. On the other hand, stereographic projection 
enables us to construct the visual angle on a plane.  
    Here is a simple question: what is the mean of visual angle in hyperbolic geometry? This natural 
question is yet to be investigated. We have already found out a few interesting things, 
complementary angle and complementary geodesic rectangle. These things may give us a clue for a 
deep understanding and a further study of spherical and hyperbolic geometries.  
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