
Build Interactive Mathematics Web Services
Using Ajax Technology

and Automated Reasoning Tools

Zhenbing Zeng
zbzeng@sei.ecnu.edu.cn

Software Engineering Institute
East China Normal University

200062 Shanghai, China

Hongguang Fu
fu_hongguang@hotmail.com

Laboratory for Automated Reasoning and Programming
Chengdu Institute of Computer Applications, Chinese Academy of Sciences

610041 Chengdu, China
.

Abstract: In this paper we show a method to build mathematics web services through integrating the newly developed
JavaScript technology Ajax with automated reasoning tools like the symbolic algebra and dynamic geometry. We
investigate some typical interactive learning scenarios and propose a Perl format to describe the process. The scripts of
this format can be automatically transformed to MathML files. Using the JavaScript commands embedded in the
MathML files the Ajax engine enables the users to interact with server. The JavaScript also communicates with the
automated reasoning programs in server and client machines.

1. Introduction

Recently, a new pattern of computer-aided learning has been developed by applying web

services technologies. Using XML, SOAP, WSDL and UDDI open standards, web services provide
a standard way to integrate Web-based applications over an Internet protocol backbone. In Web
services, XML is used to tag the data, SOAP (Simple Object Access Protocol) is used to transfer
the data, WSDL (Web Services Description Language) is used for describing the services available
and UDDI (Universal Description, Discovery and Integration) is used for listing what services are
available. One successful example of computer-aided learning in mathematics is CALM [1], a
project developed in the Department of Mathematics at Heriot-Watt University in Edinburgh. The
current system CUE of CALM project includes a flexible assessment engine and is capable of
delivering test on a personal computer or over the web. Another example of mathematics web
service is a 24-month project MONET [2, 3] done in the Department of Computer Sciences at Bath
University. The project investigated the mechanisms for describing a mathematical web service
which on the one hand provide sufficient detail to allow for automatic service discovery, while on
the other hand are not too complicated for practical use. MONET uses OpenMath to represent
mathematical problem ontology and uses Description Logic and OWL (Web Ontology Language)
in mathematical service matching.

As it is in the traditional process of mathematics education, conceptual recognition and problem
solving are the cores of any web-based mathematics learning system. In many mathematics web
services the symbolic computation programs (like Maple and Mathematica) play the role of

mailto:zbzeng@sei.ecnu.edu.cn
mailto:fu_hongguang@hotmail.com

teachers. For example, Maple is used in CATT programme [4], iSchloar 2004 [5], MapleTA [6],
MONET to create exercises and answers. SureMath [7] is a symbolic algebra program specifically
designed for solving word problems. R. Milner proposed an object model for creating mathematical
content on web by integrating symbolic computation programs and dynamic geometry software
(like Cinderella and Geometer's Sketchpad) in [8]. Since late of 1990, some packages with
symbolic computation, dynamics geometry and automated theorem proving modules have been
developed and used to provide mechanical solutions and certain abilities of human-machine
interaction in mathematics education software (e.g., Geometry Expert [9], Super Sketchpad [10],
and MathXP [11]). We call this kind software “automated reasoning tools” in this paper. It is worth
to indicate that various non-commercial freeware are available for constructing mathematics web
services now.

The structure shown in Fig.1 illustrates a typical structure of web-based mathematics teaching
and learning systems (see [12, 13, 14]). In this model, teachers write course materials (examples,
glossary of definitions and additional course notes) in LaTeX or MathML format. The student
requests and answers are sent by CGI, applets or JavaScript. The automated reasoning tools (AR
tools) like Maple, NAG are invoked through middleware like CORBA, DCOM or Java Remote
Method Invocation.

There are two primary drawbacks to current Web service models for mathematics. The first is the
lack of a description language which is suitable for human-machine interactive operation and is
also easy for mathematics teachers to use.

The second drawback is that the most web page of mathematics contents available now are
prepared using the traditional form, and the traditional web pages does not support human-machine
interaction in a “user-friendly” manner, as the requests to the server for more information are
typically answered by the web server delivering a new page and the user has to wait until that page
has loaded although the new page contains many of the same element in many case. A change has
happened to this traditional model recently with using of a new technology called Ajax. Ajax
(Asynchronous JavaScript And XML) allows navigating web pages while the page itself - quietly
and unobtrusively - sends requests to the server for more data, and can use that data to update the
user interface without the user having to wait for a new page or a page refresh. It is apparent the
mathematics web service built with Ajax technology will have more characteristics in aspect of

Teachers Student

Server AR tools

Keyboard
Screen

Course material
Questions

Question
answers

Answers

WEB

Figure 1. The model of web-based mathematics learning
systems, AR tools stands for automated reasoning tools.

human-machine interaction.
In this paper we propose a method to build interactive mathematics web service by integrating of

Ajax technology and automated reasoning tools. In Section 2 we observe a typical use case scenario
of web-based mathematics teaching and learning, and coming up with requirement for building
mathematics web service. In Section 3 we introduce a Perl script format for describing the human-
machine interaction. In Section 4 we will discuss the frame for building mathematics web service
with Ajax, symbolic computation and dynamic geometry.

2. A Typical Use Case Scenario and Requirements for Mathematics Web
Services

We investigate the general requirements of interactive mathematics web services by analyzing

the following typical use case scenario.
In the use case, we're going to follow a scenario where a grade 7 student [the user] learns to

formulate and solve equation from an application problem.
> user: selects the topic and a specific problem from the GUI (Graphic User Interface) of a

web-based learning system.
> machine: displays the selected exercise problem stored in the server, with the widgets (in

blue colour) for user to give instruction for browsing and selecting.

Practical Application Problem Solving

Text Book 1: Algebra I, People’s Education Press [▲]
■ Text Book 1 Chapter 4: Equations of degree 1 with one unknown
□ Chapter 1 Section 3: Practical Application Problem Solving □ Chapter 2

Problem 12 □ Chapter 3
 ■ Chapter 4

A class held a postage stamp exhibition. The
number of the postage stamp is [24] more than [3]
times the number of the students, and [26] less than
[4] times the number of students. How many postage
stamps are there and how many students are in the
class?

 ○ Section 1
 ○ Section 2
 ● Section 3
 ○ Section 4
□ Chapter 5
□ Chapter 6

□ Text Book 2
□ Text Book 3
□ Exercise Book
□ ExaminationProblems
□ xxx
[▼] ◄[show trevious] [select this] ►[show next]

> user: browses the content of the exercise problems by clicking the widgets (◄ and ►),

clicks editable text to change, and selects a specific exercise by clicking ,

Figure 2: An example of the interface for problem browsing and
selecting. The Ajax engine uses Javascript commands embedded in
the source code of the page to send the request to the server when user
gives instruction and then use the received data to update interface
without a page refresh

> machine: displays the selected problem in the work sheet (a bitmap window), with the
widgets for user to edit the text boxes, solves the problem interactively, or shows the solution.

> user: clicks I to start the process of interactive solving immediately, or changes the numbers in
the four text boxes and then clicks I to start the process of interactive solving, or clicks A to see the
whole answer for this problem.

> machine: checks the changed data and displays the error information if any change is not
appropriate in a pop-up-dialog window or directly in the worksheet bitmap, as shown in Figure 4
(which corresponds to [-2], [u], [3] and [0] in the four text boxes, respectively). In former case,
active the widget E , and in the later, active the edit widget immediately after the pop-up-dialog
window is closed. If there is no error, display the interactive solving interface or the answer in the
worksheet.

> user: if there is no change made or no error has been found in the input, clicks I to start

the process of interactive solving or clicks A to see the whole solution. (For simplicity we omit the
later event and assume that the text boxes have not been changed).

> machine: displays the instruction for interactive solving as in Figure 5 if the user clicked
I with two text boxes (inside the brackets) for user to write.

Worksheet 1

Problem 1
A class held a postage stamp exhibition. The number of the postage

stamp is [24] more than [3] times the number of the students, and [26]
less than [4] times the number of students. How many postage stamps
are there and how many students are in the class?

E [edit the text box] I [interactively solving] A [show answer]

Figure 3. The interface of a worksheet. The red texts in the red
bracketsare editable by the user. Widgets I and A are for selecting
the solving methods. The widget E is active in default.

Attention Please
 It should be a positive integer in the first box;
 It should be an integer in the third box.

X [return to worksheet]

Figure 4: A pop-up-dialog window for error message.
This window is on the top of the worksheet.

> user: inputs some text (mathematics expressions) in the text boxes and clicks the widget I

to check if the inputs are correct, or clicks the widget A to see the answer for this step. Type mathematics
expression in plain text and the system changes it into MathML format automatically.

> machine: displays the mathematics expression in normal format; checks the expression
written by the user, if there is any error, displays an error information as in Figure 6, otherwise displays
the next instruction for interactive solving as in Figure 7; or displays the correct answer for this step if A is
clicked.

Problem 1
A class held a pos

stamp is [24] more th] times the number of the students, and [26]
less than [4] times th
are there and how ma ts are in the class?

tage stamp exhibition. The number of the postage
an [3
e number of students. How many postage stamps
ny studen

Solution

Suppose there are x students in the class. Then the number of the
postage stamps is [y] . And according to the assumption, we can
constrcut the following equation

].264[243 +=+ xx

E [edit the text box] I [interactively solving] A [show answer]

Worksheet 1
Attention Please
 It should be a polynomial of x inside the first
box;
 The expression inside the second box is not
correct.

X [return to worksheet]

Figure 6. The expressions written in the text boxes are not correct.

Worksheet 1

Problem 1
A class held a postage stamp exhibition. The number of the postage

stamp is [24] more than [3] times the number of the students, and [26]
less than [4] times the number of students. How many postage stamps
are there and how many students are in the class?

Solution

Suppose there are x students in the class. Then the number of the
postage stamps is []. And according to the assumption, we can
constrcut the following equation

].[243 =+x

E [edit the text box] I [interactively solving] A [show answer]

Figure 5. The instruction for interactive solving. User clicks the
widget I to check if the inputs are correct.

> user: inputs the solution to the equation 264243 −=+ xx in the text box and clicks the

widget I to check if it’s correct, or clicks the widget A to see the answer for this step.
> machine: displays the next step for user if the solution written in the text box is correct,

otherwise displays an error information; displays the correct answer for this step if the user clicked A.
Refer to “process-2” (shadowed text) in the Perl scripts next section for this step. In Section 4 we will

show an implementation of this interactive process with Ajax technology. Do this process until the following
final step.

> user: inputs text inside the text boxes, clicks the widget I to check if it’s correct, or clicks
the widget A to see the answer for this step, until the machine shows the finish information.

> machine: displays the finish information, as shown in Figure 8, if the user input in the
last round of interactive solving process are all correct.

The above scenario illustrates the three important aspects of an interactive mathematics web

service:

Solution
Suppose there are x students in the class. Then the number of the

postage stamps is [3]. And according to the assumption, we
can construct the following equation

24+x

].264[243 −=+ xx
Solve this equation, we obtain

].50[=x
So the number of the students in the class is [50], and the number of
the postage stamp is [174].

N [do next exercise] X [exit]

Worksheet 1 Q. E. D.

X (return)

Figure 8. The finish information.

Solution
Suppose there are x students in the class. Then the number of the

postage stamps is [3]. And according to the assumption, we
can constrcut the following equation

24+x

].264[243 −=+ xx
Solve this equation, we obtain

].[=x

Worksheet 1

E [edit the text box] I [interactively solving] A [show answer]

Figure 7. The instruction for the next step is displayed if the
expressions written in the text boxes are correct.

(1) a knowledge-based metadata catalog service which supports users to browse and review
mathematics contents of a broad categorization of the problem area(s) according to some agreed
taxonomy in some suitable ontology;

(2) an interactive worksheet which supports users to change parameters of exercises, inquires
answers and instruction, manipulate mathematics expression, draw geometry and submit solution;

(3) an easy-to-use programming language that can be used to describe the human-machine
interactive processes in mathematics learning.

The implementing of (1) means the realization of a large-scale knowledge engineering which
needs the extensive the close cooperation between experienced mathematics teachers and software
engineering.

In view of computer network technology, Ajax is an appropriate technology for construct the
real-time interactive system satisfying the requirements in (2). Using this technology we can build
interfaces to our web applications which are much more like those our users are used to from their
desktop applications. Mathematics expressions and geometry images can be populated
automatically with data retrieved from the server, data grids can be sorted or paginated, and server-
side databases can be queried and edited - all without the user having to wait for pages to load.

Operations on mathematics expression (including checking two expressions for equality,
checking an expression for a pattern match, solving equations, evaluating and computing with
expressions) can be implemented with symbolic computation software and remote invoke method
(like CORBA).

MathML makes it possible to develop Web-based applications for displaying mathematical
content. There are standard tools for converting LaTeX equations to MathML. It becomes easy to
create dynamic math web sites featuring interactive equations using JavaScript with MathML. See
[15, 16, 17].

The above standard technologies, Ajax, Maple (Mathematica, Geometer’s Sketchpad or the
freeware with similar functions) and MathML provide a substantial for the interactive worksheet
mentioned in (2).

As we will show in next section, Perl is a suitable language for (3).

3. A Proposal for the Format of the Script Describing Interactive Web Services

In this section we introduce a method to describe the interactive mathematics learning in web.
Our proposal is to use Perl (Practical Extraction and Report Language) and then transform the Perl
script into a MathML file. Perl is a popular language interactive web-based application. What is
more important is that Perl is relatively easy to master for teachers without programming
experience. We will not go to detail for Perl, see [18, 19] for Perl programming and examples of
Perl application. For simplicity, we only give the segment of the Perl scripts for “process-1” and
“process-2” in the interactive process of the use case scenario presented in Section 2.

#prb12.pl, perl script for interactive solving
#initial-process: process-0(omitted)

#process-1
#variables
@e=();
@f=();
$x=”x”;

#display content
print “Solution:\n
Suppose there are $x students in the class. Then the number of
the postage stamps is [$e]. And according to the assumption, we
can construct the following equation\n
3*x+24=[$f].”;

#answer
@answer1=($e==”$m*$x+$a” or $e==”$n*$x+$b”) && $f==”$n*$x+$b”;
#error information
%errorinformation0=(
not($e==”$m*$x+$a” or $e==”$n*$x+$b” or not(polynomialp($e,$x))
==> ”In the first text box there should be a polynomial of $x”,
not($e==”$m*$x+$a” or $e==”$n*$x+$b” or polynomialp($e,$x))
==>”The expression in the first text box is not correct”,
not($f==”$n*$x+b”) ==>”The expression in the second text box is
not correct”);

#process-2
#An Implementation of this step will shown in the Section 4
#variable
$g=();
#display
print “solve this equation, we obtain \n
$x=[$g].”;
#answer
@answer2=”$g==($m-$n)/($b-$a)”;
#note: the answer can also be written in a function form
$answer=proc(g,a,b,m,n);
#error information
%error-information2=(
not($g==($m-$n)/($b-$a)) ==>”The answer you written is not
correct”);

#process-3(omitted)
#process-4(omitted)

#end-solution-1
#end-file

4. A Prototype Implementation for the Interactive Web Service with Ajax
Technology

In this section we show how to use Ajax to realize the interactive scenario we have shown in

the previous sections. For simplicity we just explain the implementation method for the process-2
in the Perl script. Figure 9 describes the outline of the AJAX interaction in the implementation.

Figure 9. The outline of an AJAX interaction

The interaction contains the following seven steps.

(1) A client event occurs;
(2) An XMLHttpRequest object is created and configured;
(3) The XMLHttpRequest object makes a call;
(4) The request is processed by the ValidateServlet via CORBA with AR Tools;
(5) The ValidateServlet returns an XML document containing the result;
(6) The XMLHttpRequest object calls the callback() function and processes the result;
(7) The HTML DOM is updated.

We give an explanation to each step in more detail with fragment of code.
Step 1: JavaScript functions are called as the result of an event. In this case, the function

validate() is mapped to an onkeyup event on text box (a form component). This form element will
call the validate() function each time the user presses a key in the form field.

<input type="text"
id="textbox"
name="id"
onkeyup="validate();" >

Step 2: The validate() function creates an XMLHttpRequest object and calls the open function
on the object. The open function requires three arguments: the HTTP method, which is GET or
POST; the URL of the server-side component that the object will interact with; and a Boolean
indicating whether or not the call will be made asynchronously. If an interaction is set as
asynchronous (true), a callback function must be specified. The callback function for this
interaction is set with the statement req.onreadystatechange = callback;.

var req;
function validate() {
 var idField = document.getElementById("textbox");

 var url = "validate?id=" + escape(idField.value);
 if (window.XMLHttpRequest) {//for non IE browser
 req = new XMLHttpRequest();
 } else if (window.ActiveXObject) {//IE 5.0 and up
 req = new ActiveXObject("Microsoft.XMLHTTP");
 }
 req.open("GET", url, true);
 req.onreadystatechange = callback;
 req.send(null);
}

Step 3: The XMLHttpRequest object makes a call when the statement req.send(null); is reached.
In the case of an HTTP GET, this content may be null or left blank. When this function is called on
the XMLHttpRequest object, the call to the URL that was set during the configuration of the object
is called. In this example, the data that is posted (id) is included as a URL parameter. Use an HTTP
GET when the request is idempotent, meaning that two duplicate requests will return the same
results, and an HTTP POST method when the data sent to the server will affect the server-side
application state. In this example we use HTTP GET.

Step 4: Use CORBA or other remote invoke methods to get the solution of the equation
 from an AR tool (here a symbolic computation program). This part is not related

to Ajax technology so we will not go to detail discussion.
264243 −=+ xx

Step 5: The ValidateServlet returns an XML document containing the results. In this example,
if the user answer is “49”, the ValidateServlet will write an XML document to the response
containing a message element with the value of invalid.

response.setContentType("text/xml");
response.setHeader("Cache-Control", "no-cache");
response.getWriter().write("invalid");

Step 6: The XMLHttpRequest object calls the callback() function and processes the result. The
XMLHttpRequest object was configured to call the callback() function when there are changes to
the readyState of the XMLHttpRequest object. The parameter readyState can be one of the
following:

0: Uninitialized, open() has not been called;
 1: Loading, send() has not been called;
 2: Loaded, send() has been called;
 3: Interactive, send() has been called, but the request has not been satisfied;

4: Completed, request has been satisfied.
The parameter status can be one of the following values

404: server not found;
500: error in the Server program;
200: OK, a successful HTTP interaction.

In this example we assume that readyState is 4 and the HTTP status code is 200.
function callback() {
 if (req.readyState == 4) {
 if (req.status == 200) {
 processMessage()
 }
 }
}

The function processMessage() updates the HTML DOM (an object representation of the
documents being displayed by the browser, Document Object Model,) based on the message
returned from the ValidateServlet. Following is the XML document of the message:

<message>
invalid

</message>
Step 7: Update the HTML DOM by using document.getElementById() to gain the reference to

the element appearing in the HTML document and using JavaScript to modify the element's
attributes.

<script type="text/javascript">
function processMessage(message) {
 mdiv = document.getElementById("messageText");
 if (message == "invalid") {
 mdiv.innerHTML = "<div style=\"color:red\"> </ div>";
 } else {
 mdiv.innerHTML = "<div style=\"color:red\"> </ div>";
 }
}
</script>
<body>
<div id="messageText"></div>
</body>

Figure 10 shows the user interface corresponding to the above Ajax interaction in a prototype

implementation.

Figure 10. The user interface corresponding to process-2.

5. Conclusion

We have proposed in this paper the mechanism to build the interactive mathematics web services
with a prototype implementation of a specific example. Our method integrates the easy-to-use Perl
language, the standard Ajax technology and the powerful symbolic computation and dynamic
geometry tools.

It is worth to indicate that as a natural development of education technology in Internet, the
mathematical web service and other remote learning environment can be provided by in other
different ways. One applicable technology that is already used in education is MuPAD (Multi
Processing Algebra Data Tool, [20]) computing server. This technology provides a remote
possibility to access MuPAD (on the server side) from a web page. One advantage of this
technology is graphics and animation, and export graphics to JavaView formats. In [21], an initial
design of Lupin, a layered framework of PSEs construction based on Web technologies is proposed
and discussed. It is also worth to mention that people can use Lisp (for example, the ACL
AllegroServe and WebActions framework) for both the server (Ajax web application, [22]) and the
AR tools.

Acknowledgements This work is supported in part by NKBRPC-2004CB318003 and NNSFC-
10471044. The authors would like to thank Dr. Mirek Majewski and Dr. Sheng-chuan Wu for their
valuable suggestions.

References

[1] C E Beevers, IT was twenty years ago today..., LTSN MSOR Maths CAA series, January
2006, http://mathstore.ac.uk/articles/maths-caa-series/jan2006/.

[2] Marc-Laurent Aird, MONET: service discovery and composition for mathematical problems.
Proceedings of IEEE workshop on Agent-based Cluster and Grid Computing (at CCGrid 2003).

[3] Julian Padget, MONET: Mathematical service discovery and composition,
http://monet.nag.co.uk/cocoon/monet/publicdocs/monet_talks.html

[4] Bob Broughton, Easaw Chacko, Leng Leng Lim, Computer-Aided Teaching and Testing,
[5] iScholar, www.ischolar.ca/
[6] David Fisher, Review of Maple T. A., MSOR Connections, Nov 2004, Vol. 4 No. 4,

http://mathstore.ac.uk/newsletter/nov2004/pdf/mapleta.pdf
[7] SureMath, http://www.suremath.com/
[8] Robert Miner, An Object Model for Dynamic Math,

http://www.mathmlconference.org/2002/presentations/miner/.
[9] Gao Xiaoshan, Zhang Jingzhong and Chou Shang-Ching. Geometry Expert, Nine Chapters

Pub (in Chinese), Taiwan, 1998.
[10] Zhang Jingzhong, Master the Freeware Super Sketchpad, Science Press, China, March 2006.
[11] Fu Hongguang, Zeng Zhenbing, Hu Yufeng, Chen Changyu, Zhong Xiuqin, MathXP,

Sichuan Electronic Audio Video Publish Center, China, September 2002.
[12] Dana Petcu, Cosmin Bonchis, Cornel Izbasa, Symbolic Computations based on Grid

Services , International Journal of Computers, Communications & Control, Vol. I (2006), No. 1, pp.
33-39

http://www.ischolar.ca/

[13] Andreas Strotmann, Wanjiku Nganga, and Olga Caprotti, Multilingual Access to
Mathematical Exercise Problems,

[14] Martti Rahkila, Agent-based Method for Self-study Interactive Webbased Education, Thesis
submitted in partial fulfillment of the requirements for the degree of Licentiate of Science in
Technology. Helsinki University Of Technology, Department of Electrical and Communications
Engineering Laboratory of Acoustics and Audio Signal Processing Espoo, May 17th, 2006

[15] Luis Alvarez-Sobreviela, REDUCE-MathML Interface,
http://www.software.ibm.com/network/techexplorer/

[16] Pao-Ta Yu, Zhong-Ming Weng, Yu-Xu Zeng, Constructivism On the Web Education--On
the Design of Interactive Math Editing Environment based on the MathML,
http://sun.tchcvs.tc.edu.tw/cai/pdf/w4.pdf.

[17] HTML Math Overview, http://www.geom.uiuc.edu/~rminer/w3c/.
[18] Larry Wall, Tom Christiansen, Jon Orwant, Programming Perl, 3rd ed., O'Reilly Media, Inc..

(July 2000).
[19] Free Perl Scripts, www.anybrowser.com/tools.html.
[20] M. Majewski, MuPAD Graphics – Stretching Limits of Scientific Visualization, ATCM

2003, December 15-19, 2003, Chung Hua University, Hsin-Chu, Taiwan.
[21] K. Li, M. Sakai, Y. Morizane, M. Kono, and M.-T. Noda, Lupin: Towards the Framework

of Web-based Problem Solving Environments, ATCM 2003, December 15-19, 2003, Chung Hua
University, Hsin-Chu, Taiwan.

[22] Franz Inc., Allegroserve, Webactions and Ajax, http://www.franz.com/support/tech_corner
/ajax.lhtml.

http://www.software.ibm.com/network/techexplorer/
http://sun.tchcvs.tc.edu.tw/cai/pdf/w4.pdf
http://www.geom.uiuc.edu/~rminer/w3c/
http://www.anybrowser.com/tools.html
http://www.franz.com/support/tech_corner

