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Abstract
In this paper, we will explore that if we are given two di¤erentiable curves or surfaces

in two or three dimensions respectively, how we can �nd the local maximum or minimum
distance between these two curves or two surfaces. We begin with a simpler version
from a two dimensional case, which is inspired by the software, ClassPad Manager (see
[1]), integrating Dynamic Geometry features with a Computer Algebra System (CAS).
We further demonstrate that the geometric signifcance of �nding extremum distances
between two curves or two surfaces is consistent when we apply Lagrange Multiplier
Method. Finally, we show how we can �nd the minimum distance between two surfaces
with the help of Maple 10 (see [4]).

1 Introduction

Finding minimum distance between two surfaces has many applications in robotic engineering
(see [2] and [3]). In section 2.1, we describe one key observation of �nding the minimum
distance inspired by the integration of Dynamic Geometry with a Computer Algebra System
(CAS). We next describe methods of �nding global maximum or minimum distance in two and
three dimensional cases. In this paper, we assume two curves in two dimensions or two surfaces
in three dimensions are disjoint unless otherwise speci�ed. For simplicity, we will calculate the
square distance jx� yj2 instead of jx� yj ; where x and y are in R2 or R3:

2 Two Dimensional Case

2.1 A Simple Observation with A Dynamic Geometry and CAS
Software

Before we �nd the local maximum or minimum square distance between two given curves, we
note the following observations:



1. Given a point A point (in some neighborhood) on y = f(x); we can attempt to �nd a
corresponding point B on y = g(x) so that the vectorAB is perpendicular to the tangent
line at B Therefore, we attempt to solve for c so that the following equation is met�

g(c)� f(x)
c� x

�
� g0(c) = �1: (1)

2. When c can be solved explicitly in terms of x; say c = G(x), then y = G(x) is the solution
to this problem.

3. When c can not be explicitly solved, then the solution c will satisfy the following implicit
equation: �

g(c)� f(x)
c� x

�
� g0(c) + 1 = 0: (2)

We note that many dynamic geometry software has the capability of constructing geometric
�gures and tracing the locus after an animation. We will use ClassPad Manager [1] to explore
how dynamic animations can help making the observations more accessible.

Example 1 Let C1 be the circle represented by x2 + (y � 1)2 = 1 and C2 be the parabola
represented by g(x) = �x2 � 1: We show that given a point C in some neighborhood on C1; we
can �nd the corresponding point A on C2 so that CA is perpendicular to the tangent line at A:
For the construction below, we start with a point A on C2 �rst and �nd the corresponding point
C on C1; which reverses what we want to do but this will become clear later. We describe the
steps of constructing this animation below:
Step 1. We construct two curves, C1 and C2.
Step 2. We next construct the tangent to a curve at the point A of C2.
Step 3. We then construct a perpendicular line (normal line) to the tangent line at the point
A:
Step 4. We construct the intersection between the normal line and C1 and call such point C: (We
note that due to the limitation of the software, we can only �nd the intersection geometrically
for certain curves.
Step 5. We animate the point A along curve C2. We show some of the screen shots below:

Figure 1(a),(b),(c) and (d) Animation from ClassPad

Step 6. We collect the point C on C1 �rst and the corresponding point A on C2 later after the



animation. We collect only the x � values for points of C and A below. Note that the �rst
column represents the x � values of C and the second column represents the x � values of A
respectively below.

Table 1 Correspondence between Input C and Output A:

Step 7. We copy Table 1 and paste it to a spreadsheet application to get the following scatter
plot. The x� axis represents the x� values of the points C on C1 and the y� axis represents
the x� values of the corresponding points A on C2:

Figure 2 Scatter plot between C and A

We note that the plot above simulates the solution curve for the x� values of C and A respec-
tively, which we will demonstrate here. We de�ne f(x) = 1 �

p
1� x2 and solve the equation�

g(c)� f(x)
c� x

�
� g0(c) + 1 = 0 explicitly with Scienti�c WorkPlace 5.5 or Maple 10 to get the

expression c in terns of x; which we de�ne it as the function h below:
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We plot y = h(x) below and note that the graph is consistent with Figure 2 we got from
ClassPad Manager.
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Figure 3 Plot between C and A

Next we compare following �partial list�of the numerical computations with Table 1 from Class-
Pad above, they are identical up to four decimal places.

h

0BBBBBBBBBBBBBBBBBBBBBB@

0BBBBBBBBBBBBBBBBBBBBBB@

�0:8324367047
�0:7454037195
�0:6256758243
�0:6808309565
�0:5761952621
�0:5306416864
�0:4880148696
�0:4476710787
�0:4091621831
�0:3721579654
�0:3364042965
�0:3016986366
�0:2678748608
�0:234792892

1CCCCCCCCCCCCCCCCCCCCCCA

1CCCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBBB@

�0:209 19
�0:198 99
�0:178 58
�0:188 78
�0:168 38
�0:158 17
�0:147 97
�0:137 76
�0:127 56
�0:117 36
�0:107 15

�9: 694 7� 10�2
�8: 674 3� 10�2
�7: 653 9� 10�2

1CCCCCCCCCCCCCCCCCCCCCCA

: (4)

2.2 Extremum Distance Between Two Curves in Two Dimensions

Since distance function between two points is a continuous function, if we restrict both functions
f and g in a closed and bounded domain, the global maximum and minimum exist by the
Extreme Value Theorem. By following the idea we described in preceding section, we note
that the necessary conditions that the distance AB; where A = (x; f(x)) and B = (c; g(c)); is
the minimum or maximum distance between y = f(x) and y = g(x) are:

AB is perpendicular to the tangent line at A and

AB is perpendicular to the tangent line at B: (5)

Or the following conditions must be satis�ed simultaneously.�
g(c)� f(x)
c� x

�
� g0(c) + 1 = 0: (6)



�
g(c)� f(x)
c� x

�
� f 0(x) + 1 = 0: (7)

We demonstrate this by using the following example.

Example 2 Let f(x) = sin(x) + 5 and g(x) = � cos (x� 1) and we restrict our domain in
[�5; 5]. We solve the equations (5) and (6) which result in the following three cases

1. When

x1 = �1:030769192; f(x1) = 4:142305270;
c1 = 1:540027135; and g(c1) = �:8576947300:

We note that the square distance between (x1; f(x1)) and (c1; g(c1) is about 31:60899376:
We sketch the graphs of y = f(x); and y = g(x); the vector connecting (x1; f(x1)) and
(c1; g(c1); the tangent line at x = x1 and the tangent line at x = c1 together as follows:

Figure 4 Relative Maximum Distance

2. When

x2 = 3:421927911; f(x2) = 4:723322166;

c2 = �:8511315841; and g(c2) = :2766778338:

We note that the square distance between (x2; f(x2)) and (c2; g(c2) is about 40:49225911:
We sketch the graphs of y = f(x); and y = g(x); the vector connecting (x2; f(x2)) and



(c2; g(c2); tangent line at x = x2 and tangent line at x = c2 together as follows:

Figure 5 Global Maximum Distance

3. When

x3 = �1:684808257; f(x3) = 4:006492323;
c3 = �2:027580723; and g(c3) = :9935076771:

We note that the square distance between (x3; f(x3)) and (c3; g(c3) is about 9:195569440:
We sketch the graphs of y = f(x); and y = g(x); the vector connecting (x3; f(x3)) and
(c3; g(c3); tangent line at x = x3 and tangent line at x = c3 together as follows:

Figure 6 Global Minimum Distance

We conclude that global maximum distance and minimum distance occur at case 2 and
case 3 respectively.



3 Three Dimensional Case

Here we describe how to �nd the local extremum distance between two surfaces which satisfy

f(x; y; z) = 0 and g(x; y; z) = 0; (8)

where f and g are di¤erentiable functions in its respective domain. Following what we have
done in two dimensional case, we see that if A = (x1; x2; x3) is on the surface f(x; y; z) = 0
and B = (y1; y2; y3) is on the surface g(x; y; z) = 0; the necessary condition for �nding such
extremum distance is to have

AB is parallel to the normal vector of the tangent plane at A and

AB is parallel to the normal vector of the tangent plane at B: (9)

More speci�cally, the following conditions should be met:

AB = �1 (rf) at A;
AB = �2 (rg) at B;
f(x1; x2; x3) = 0; and

g(y1; y2; y3 = 0: (10)

where rf = (fx; fy; fz) and rg = (gx; gy; gz) are the gradients of f and g respectively. The
above set of equations is equivalent to the followings:

y1 � x1 = �1 (fx)(x1;x2;x3) ; (11)

y2 � x2 = �1 (fy)(x1;x2;x3) ; (12)

y3 � x3 = �1 (fz)(x1;x2;x3) ; (13)

y1 � x1 = �2 (gx)(y1;y2;y3) ; (14)

y2 � x2 = �2 (gy)(y1;y2;y3) ; (15)

y3 � x3 = �2 (gz)(y1;y2;y3) ; (16)

f(x1; x2; x3) = 0 and g(y1; y2; y3) = 0: (17)

This gives a geometric interpretation when we apply the Lagrange Multiplier Method in solving
this problem. In other words, if our objective is to minimize or maximize the square distance
jx� yj2 and subject to both f(x) = 0 and g(y) = 0; then we write

L(x;y; �1; �2) = jx� yj2 + �1h(x)+�1g(y) (18)

or

L(x1; x2; x3; y1; y2; y3; �1; �2) = (x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2 +
�1h(x1; x2; x3) + �2g(y1; y2; y3); (19)

Then the necessary condition to achieve the critical distance is to have

rL = 0; (20)

which will give the same results as our observation from equations (11)-(17). We demonstrate
this by using the following example.



Example 3 Let f(x; y; z) = sinx cos y � 2 � z and g(x; y; z) = x2 + y2 � z: If we restrict the
domain to be [�2; 2] � [�2; 2] for both functions, and solve rL = 0: The computation shows
only the following solution

x1 = :9776334541; x2 := 0; x3 = �1:170823173; and
y1 = :2794931976; y2 = 0; y3 = 0:0:7811644752:

The square distance jx� yj2 is 2:047249995; which implies the distance between these two sur-
faces to be about 1: 430 8: The graph below shows the solution set will achieve the global minimum
distance for these two surfaces.

Figure 7 The shortest distance between two surfaces

4 Conclusion

Traditionally, when technological tools are not available, students may �nd applying Lagrange
Multiplier Method in solving optimization problems di¢ cult; not only due to the complicated
algebraic manipulation nature but also they often do not fully understand the geometric in-
terpretation behind the method. This paper demonstrates that optimization problems can be
made interesting if teachers inspire students with geometric motivation. It is also important to
note the integration between a dynamic geometry software with a computer algebra system is
crucial: the dynamic nature makes analytic geometry live and leave static and complicated al-
gebraic computations behind the scene for a CAS to do further investigations. Author believes
that the integration between a three dimensional dynamic geometry software with a CAS will
further make three dimensional problems in Analytic Geometry more accessible.
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