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Abstract

A limit problem was mentioned from James Stewart Calculus textbook (see [1]) and
was extended by [2]. In this paper, we further extend the two dimensional results men-
tioned by [2] and we extend the results to three dimensions. It is indisputable that
dynamic geometry software have contributed greatly when making conjectures on 2D and
3D Analytic Geometry.

1 Introduction

There is an interesting limit problem from the Calculus textbook by J. Stewart (see [1]). Con-
sider the Figure 1 below which shows the circle C1 of (x� 1)2 + y2 = 1 and a shrinking circle
C2 of radius r; whose center is at the origin. Let P be the point (0; r); and Q be the upper
point of intersection between these two above. If we let R be the x� intercept of the line PQ:
It can be shown that R goes to (4; 0) as C2 shrinks to the origin, or as r ! 0+:

Figure 1: From Stewart Calculus Book



It was summarized by [2] that the limit R varies when the �xed curve C1 is replaced by the
following various curves (see Table 1).

Table 1. A Summary from Robert Kreczner.

In this paper, we will extend the results mentioned in Table 1 to ones in three dimensions. But
�rst we show the limit R goes to (0; 0) (as r ! 0+) when the �gure C1 is not symmetric to the
x� axis.
Throughout this paper, we consider the intersection between the shrinking circle (or sphere)

and the �xed curve (or surface) above x� axis (or xy � plane).

2 When the center of the �xed circle is not on the x�axis
2.1 Exploration and Conjectures

We consider C1 to be the circle (x� c)2 + (y � d)2 = c2 + d2 and C2 to be the shrinking circle
of x2 + y2 = r2 as r ! 0+: We use ClassPad Manager Version 3 (see [3]) to demonstrate how
the animations and scatter plot lead us to conjecture that limit R goes to 0 as r ! 0+:
The following sequence of plots (Figures 2 to 5 below) shows as C2 shrinks to the origin

when C1 is the �xed circle (x� 0:4)2 + (y � 0:5)2 = (0:4)2 + (0:5)2; the point R (denoted by G
below) goes to the right (x > 0) and later approaches to origin from the left (x < 0).

Figure 2: When C2 is x2 + y2 = 2:

Figure 3: When C2 is x2 + y2 = 1:23:



Figure 4: When C2 is x2 + y2 = 0:65:

Figure 5: When C2 is x2 + y2 = 0:32:

We collect the tabular data for R (or G as shown on Figures 2-5 above) as follow:

Table 2: Where does R go?

Notice from Table 2 that the x� value of R goes to a positive large number and then to a
negative large number and �nally approaches to (0; 0): We demonstrate this obervation again



by using the following scatter plot (see Figure 6 below):

Figure 6: Scatter plot of the limit R:

Therefore, our conjecture is either R goes to positive in�nity, negative in�nity or (0; 0):
Let�s further analyze this problem below.

2.2 Further Analysis

2.2.1 Using Rectangular Coordinate

Assume C1 and C2 are represented by

x2 + y2 = r2 and (1)

(x� c)2 + (y � d)2 = c2 + d2 (2)

respectively. Let P = (0; r) be on C1; where r > 0 and Q = (x2; y2) be the intersection between
C1 and C2 in the �rst or second quadrant. We note the x� intercept can be written as

x = � r
m
= � rx2

y2 � r
; (3)

where m =
y2 � r
x2

:

To �nd Q; we solve equations (1) and (2) simultaneously, and take only the intersection
above the x�axis; we get the following x2 and y2, which both Maple 10 (see [6]) and Scienti�c
WorkPlace 5.5 (SWP 5.5) (see [5]), which uses MuPAD (see [8]) as its computation engine
agree.

x2 =
1

2c

�
r2 � ddr

2 + cr
p
4c2 + 4d2 � r2
c2 + d2

�
;

y2 =
1

2

dr2 + cr
p
4c2 + 4d2 � r2
c2 + d2

(4)

By substituting x2 and y2 into equation (3), we �nd the x� intercept of PQ to be
cr2 � dr

p
4c2 + 4d2 � r2

2c2 � dr � c
p
4c2 + 4d2 � r2 + 2d2

(5)

Finally, we let r ! 0+ and compute symbolically to get

lim
r!0

�
cr2 � dr

p
4c2 + 4d2 � r2

2c2 � dr � c
p
4c2 + 4d2 � r2 + 2d2

�
= 0 (6)



2.2.2 Using Polar Coordinate

Finding the intersection(s) for two curves may not be trivial, in addition to the rectangular
coordinate method we described above, we use polar coordinate to �nd the intersection(s)
between C1 and C2 and later show that the limit goes to 0 as well. We substitute x = r cos �
and y = r sin � into (x�c)2+(y�d)2 = c2+d2 for the curve C2 and solve the following equation
for �;

(r cos � � c)2 + (r sin � � d)2 = c2 + d2: (7)

Surprisingly, we get the following three answers when di¤erent computation engines are used.

1. When Maple 10 is used, we get

2. When ClassPad Manager Version 3 is used, we get

3. When SWP 5.5 is used, the answer is too long to be listed here.

We use the angle t obtained from CP for demonstration here. We recall that the x�intercept
of PQ is

x = � r
m
= � rx2

y2 � r
=
r2(cos �)

r sin � � r ; (8)

we notice that we have two choices of angles here and we leave it to the reader to verify that
we will take only the following angle into consideration.
We de�ne the angle � to be the function

f(c; d; r) = 2 arctan

�
2d

2c+ r
+

p
4c2 + 4d2 � r2
2c+ r

�
: (9)

We �nd some interesting observations below:



Remark 1 If we take c = d; and both c and d are non-zero, consider the angle HOC or
complement of the angle HOC below (where O is the origin), which is our f(c; c; r) or f(d; d; r):
What is the limit of the angle HOC or the complement of the angle HOC when r ! 0+?

Figure 7: When c = d:

It is interesting to see that ClassPad Manager provides us the following conjecture:

Table 3 : Partial list of the complement of the angle HOC as r ! 0+:

This can be veri�ed by observing

lim
r!0+

f(c; c; r) = 2 arctan(1 +
p
2) = 2: 356 2 radian = 135 degree. (10)

Remark 2 When c 6= d; then

lim
r!0+

f(c; d; r) = 2 arctan

 
d+

p
c2 + d2

c

!
; (11)

which we obtain from Maple 10.

Finally, by substituting (9) into (8), it is not hard to see the following limit to be 0 as
expected.

lim
r!0

0BBB@
r

�
cos

�
2 arctan

�
2d

2c+ r
�
p
4c2 + 4d2 � r2
2c+ d

���
�
sin

�
2 arctan

�
2d

2c+ r
�
p
4c2 + 4d2 � r2
2c+ d

��
� 1
�
1CCCA (12)



The following example mentioned in [2] illustrates the fact that �nding the limit for limr!0+

�
� rx2
y2 � r

�
causes some problems for the Mathematica (see [7]). We show here that either rectangular or
polar coordinate method is used to �nd such limit, same problem persists for SWP 5.5 and
Maple 10.

Example 3 Let C1 be y2 = 2ax and C2 be the shrinking circle x2 + y2 = r2 as r ! 0+: It can
be shown that the curvature for C1 at the origin is 1

a
: Therefore, according to the Table 1, the

limit R will be (4a; 0): However, we note the followings:

1. When rectangular coordinate method is used in �nding limr!0+
�
� rx2
y2�r

�
; we are calcu-

lating

lim
r!0+

 
r(a�

p
a2 + r2p

�2a2 + 2a
p
a2 + r2 � r

!
; (13)

we need to set a to be a constant number before we compute the limit; otherwise, we
achieve the wrong answer 0 from SWP 5.5, Maple 10 and Mathematica as mentioned in
[2]. For example, if a = �; then the limit will be (4�; 0):

2. When polar coordinate method is used in �nding limr!0+
�
� rx2
y2�r

�
; we are calculating

lim
r!0+

0BBBB@
r2 cos

 
� � arccos

 
a�

p
a2 + r2

r

!!

r sin

 
� � arccos

 
a�

p
a2 + r2

r

!!
� r

1CCCCA ; (14)

we also need to set a to be a constant number before we compute the limit; otherwise, we
achieve the wrong answer 0 from SWP 5.5 and Maple 10. For example, if a = �; then
the limit will be (4�; 0):

Theorem 4 If the curvature circle C3 of a curve C1 at origin is described by the equation
(x� c)2 + (y � d)2 = c2 + d2, then as the circle x2 + y2 = r2 shrinks to 0 as r ! 0+; the point
R approaches origin.

Proof. Since the limit (6) or (12) does not depend on where the center or radius is, the result
follows directly by applying either Rectangular or Polar Coordinate method above.

3 Three Dimensional Cases

We consider the sphere S1 of (x� 1)2+ y2+ z2 = 1 and the sphere S2 of x2+ y2+ z2 = r2: Let
P be the point (0; 0; r); and Q be any point of intersection between these two spheres above
the xy plane. Let R be the intersection between the line PQ and the xy plane. What is the
locus of R as the sphere S2 shrinks to the origin or as r ! 0+?



3.1 Exploration

We conjecture from the following sequence of animations (done by Cabri 3D, see [4]) that the
for each �xed r; the point R will satisfy an elliptic curve. We also conjecture that locus of R
will be also an elliptic curve as r ! 0+.

]

Figures 8 and 9: When the sphere is shrinking

Figures 10 and 11: When the sphere is shrinking even further

3.2 Symbolic Analysis

We consider S1 : (x � A)2 + y2 + z2 = A2 and S2 : x2 + y2 + z2 = r2; we �nd the intersection
to be �

x =
1

2A
r2; z =

1

2A

p
4A2r2 � 4A2y2 � r4

�
(15)

Let P = (0; 0; r) and Q = ( 1
2A
r2; t; 1

2A

p
4A2r2 � 4A2y2 � r4); which is the intersection between

these two spheres above xy plane. Then we parametrize the line equation PQ as follows

x = a � s (16)

y = b � s (17)

z = r + c � s; (18)

where a = 1
2A
r2; b = t; and c = 1

2A

p
4A2r2 � 4A2y2 � r4 � r: We set z = 0 to get

s =
2rA

�
p
4r2A2 � 4t2A2 � r4 + 2rA

: (19)

This gives the project of PQ onto the xy plane to be as follows:

x =
r3

�
p
4r2A2 � 4t2A2 � r4 + 2rA

(20)

y =
2t � r � A

�
p
4r2A2 � 4t2A2 � r4 + 2rA

: (21)



We set
L = (x� 2A)2 + y2 (22)

We substitute above x and y into L and compute symbolically with Maple 10. We leave it to
the reader to verify that L satis�es an equation of a circle. In addition, we get the following
limit by using Maple 10:

lim
r!0

�
(x� 2A)2 + y2

�
= (2A)2 ; (23)

which means the point (4A; 0) is on the locus (x� 2A)2 + y2 = (2A)2 : We note that this is
consistent with two dimensional case. We further make the following observations fpr

x2 + y2 + z2 = r2 and (24)

(x� 2)2 + y2 + z2 = 4: (25)

Remark 5 By looking at the intersection Q above, we notice that we touch the top of the
intersection (largest z:value) for Q if y = 0:

Remark 6 For a �xed r; if we vary y; the projection of PQ onto the xy plane satis�es the
equation L = (x� 2A)2 + y2:

Remark 7 When r gets closer to 0+; L is getting closer to 16:

We summarize the above observations in the following Tables 4-6.

r A t L
1 2 0 15:00000274
1 2 0:1 15:00000105
1 2 0:2 15:00000032
1 2 0:3 14:99999950

Table 4: When r = 1

r A t L
0:5 2 0 15:75019366
0:5 2 0:1 15:74999118
0:5 2 0:2 15:75000073
0:5 2 0:3 15:74999998

Table 5: When r = 0:5

r A t L
0:01 2 0 0
0:01 2 0:1 15:99990000 + 0:1206376334e� 9 � I
0:01 2 0:2 15:99990000� 0:7004858473e� 10 � I
0:01 2 0:3 15:99990001� 0:6674664446e� 9 � I

Table 6: When r = 0:01



We notice from Table 6 that it is incorrect (from Maple 10) to have L = 0 when r = 0:01;
R = 2 and t = 0; it is supposed to be a number close to 16: Also the complex number I appears
in the above table which might have been due to numerical limitations from Maple 10. We
sketch x2 + y2 + z2 = 1; (x� 2)2 + y2 + z2 = 4; the vector PQ where P = (0; 0; 1) and Q is the
top intersection (0:25; 0; 0:9682458365); and the projected circle (x� 4)2 + y2 = 15 below

Figure 12: A projection done with Maple 10

Theorem 8 Let S1 be of the surface whose Gaussian curvature is same as (x�A)2+y2+z2 = A2
near origin and S2 be the shrinking sphere x2 + y2 + z2 = r2 as r ! 0+: Let P be the point
(0; 0; r); and Q be any point of intersection between these two spheres above the xy plane. Let
R be the intersection between the line PQ and the xy plane. Then the locus of R, when sphere
S2 shrinks to the origin, is

(x� 2A)2 + y2 = (2A)2 : (26)

Similarly, if S1 is of the surface whose Gaussian curvature is same as
(x� a)2
a2

+
y2

b2
+ z2 = 1

at the origin; then the locus of R will be

(x� 2a)2

(2a)2
+
y2

b2
= 1; (27)

as r ! 0+: If S1 is of the surface whose Gaussian curvature is same as
(x+ a)2

a2
� y

2

b2
� z2 = 1

at the origin, then the locus of R will be

(x+ 2a)2

(2a)2
� y

2

b2
= 1; (28)

r ! 0+:

Proof. We prove only for the case of (x � A)2 + y2 + z2 = A2; the other two cases follow
similarily.
We follow the idea that is mentioned in [2] when proving two dimensional case. Let � > 0

be any real number, and let S3 be of the sphere of (x�A)2 + y2 + z2 = A2and S4 be sphere of
(x� (A+ �))2 + y2 + z2 = (A+ �)2 : Let U and V be the intersection between the line PQ and
the xy plane with the surfaces S3 and S4 respectively. Then since we assume S1 has the same



Gaussian curvature near the origin as S3 , we observe R lies between two circles where U and
V belong to: Since the loci of U and V are

(x� 2A)2 + y2 = (2A)2 and (29)

(x� (2A+ �))2 + y2 = (2A+ �)2 (30)

respectively as r ! 0+: We conclude that the locus of R has to be between the above two
equations, and since � > 0; the limit of R is (x� 2A)2 + y2 = (2A)2 as r ! 0+:

Theorem 9 Let S1 be of the surface whose Gaussian curvature is same as (x � A)2 + (y �
b)2 + z2 = A2 + b2 near origin, and S2 be the shrinking sphere x2 + y2 + z2 = r2 as r ! 0+:Let
P be the point (0; 0; r); and Q be a point of intersection between these two spheres above the
xy plane. Let R be the intersection of the line PQ and the xy plane. Then the locus of R is
(0; 0; 0) when sphere S2 shrinks to the origin:

Proof. We project both (x�A)2 + (y � b)2 + z2 = A2 + b2 and x2 + y2 + z2 = r2 onto the xz
plane, the result follows directly from the two dimensional limits (6) and (12).

4 Conclusion

The orginal problem from [1] is interesting and could have been solved by �nding the limit
algebraically. However, the dynamic geometry software such as ClassPad V3 and Cabri 3D have
made the animations in 2D and 3D respectively much more interesting and provide the basis for
analytical proofs. The paper also shows that the algebraic and numerical computations would
have not been possible if we don�t have a computer algebra system to �nd solutions symboically,
numerically and graphically; although we note that it is important to use di¤erent Computer
Algebra Systems to check if numeric or symbolic answers are meaningful and usable. Author
predicts that the future integration between a dynamic geometry software and a computer
algebra system will further expand our ability to tackle many more interesting, realistic and
challenging problems.
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