
Parallel Algorithms On Some Numerical
Techniques Using PVM Platform On A Cluster

Of Workstations
Norma Alias, Dr.Mohd Salleh Sahimi Mohamed, Prof.Abdul Rahman Abdullah

Jabatan Matematik, Fakulti Sains, UTM, Skudai, Johor.
Jabatan Matematik dan Sains, Universiti Tenaga Nasional, Kajang, SEL.

Jabatan Komputeran Industri, FTSM, UKM, Bangi SEL.
norm ally@hotmail.com, Sallehs@uniten.edu.my, ara@ftsm.ukm.my

Abstract

In this paper, a few parallel algorithms are explained in solving one dimensional heat model
problem using Parallel Virtual Machine (PVM). This research focuses on two iteration methods,
Iterative Alternating Decomposition Explicit Method (IADE) and Alternating Group Explicit
Scheme (AGE). Conjugate Gradient (CG) is selected as an alternative method to accelerate
the convergent and efficiency of these two iteration methods.
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1.0 Introduction

Six strategies of parallel algorithms are implemented to exploit the convergence of IADE CG.
In the domain decomposition strategy Ω, the IADE CG Michell-Fairweather which is fully
explicit, is derived to produce the approximation of grid-i and not totally dependent on the
grid (i − 1) and (i + 1). In IADE CG Red Black and IADE CG SOR strategies, the domain
Ω is decomposed into two different subdomains ΩH and ΩM . The concept of multidomain
is observed in the IADE CG Multicoloring method. The decomposition of domain Ω into w
different groups of domain. The Domains for colors 1, 2, 3, ..., w are noted as Ωw1 , Ωw2 , ..., Ωww

. For the computational grid for domain Ω, its execution started with level Ωw1 , followed by
level Ωw2 and ends with level Ωww . On the vector iteration strategy, parallel IADE CG is run
in two sections. This method converges if the inner convergence criterion is achieved for each
section.

On the strategy of Incomplete Block LU preconditioners on slightly overlapping subdomains,
the domain Ω is decomposed into p processors with incomplete subdomain Ω. This strategy used
a preconditioners, the incomplete factorization with certain parameters of algebraic boundary
condition. Thus, AGE CG algorithm is shown to be extremely straightforward as implemented
in parallel algorithms using PVM. CG is chosen as the alternative parallel algorithm because
it does not increase the communication time between the processors. The application of CG is
a correction to the parallel and sequential algorithms of IADE CG and AGE CG.

2.0 IADE CG Algorithms

IADE with Mitchell-Fairtweather is introduced by Evans and Sahimi (1992) for solving the
one dimensional heat problems. A generalized finite different approximation to the different
equation at point (xi, tj+ 1

2
) is given by,

−λθui−1,j+1 + (1 + 2λθ)ui,j+1 − λθui+1,j+1 = λ(1− θ)ui−1,j + [1− 2λ(1− θ)]ui,j

+ λ(1− θ)ui+1,j, i = 1, 2, 3, ..., m, (1)



which leads to the three-point formulae, displayed in matrix form as

Au = f (2)

The IADE iterative employs the fractional splitting strategy,

(rI + G1)u
(k+ 1

2
) = (rI − gG2)u

(k) + f (3)

(rI + G2)u
(k+1) = (rI − gG1)u

(k+ 1
2
) + gf (4)

where the coefficient matric A can be decomposed into the matrices G1 and G2, as

A = G1 + G2 − G1G2

g

The consistent g = 6+r
6

, r is acceleration parameter and the constituent matrices G1 and G2

take the bidiagonal form (lower and upper respectively)
i. at the (k + 1

2
)th iterate
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with qi = r−gei

d
, ∀i ∈ [1,m]

ii. at the (k + 1)th iterate

u
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with di = r + ei and ∀i ∈ [1,m]. Sequential IADE shows that the approximation solution for

u
(k+ 1

2
)

i is dependent on u
(k+ 1

2
)

i−1 and approximation solution for u
(k+1)
m+1−i is dependent on u

(k+1)
m+2−i).

The parallel algorithm strategies are implemented to avoid the sequential IADE situation.

3.0 AGE CG Algorithms

Through the Alternating Direction Implicit (ADI), AGE methods with Peaceman-Rachford
variation is created to be more extremely powerful, flexible and it offers users many advantages .
The accuracy of this method is comparable if not better than that of the GE class of problems as
well as other existing schemes (Evans and Abdullah, 1983). This method employs the fractional
splitting strategy and the implicit form is as follows,

u(k+ 1
2
) = (G1 + rI)−1[(rI −G2)u

(k) + f ]

u(k+1) = (G2 + rI)−1[(rI −G1)u
(k+ 1

2
) + f ] , (7)

we have

A = G1 + G2

If we assume m to be odd then Ĝ could be written as,

Ĝ =




r2 b

c r2




(2×2)



where, r2 = r + a
2
. The alternating implicit nature of the (2× 2) groups where the implicit and

explicit values are given on the forward and backward levels for sweeps on the (k + 1
2
)th and

(k + 1)th levels, with r1 = r − a
2
, r2 = r + a

2
end ∆ = r2

2 − bc
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with i = 2, 4, 6, ..., m− 1, A = −cr2, B = r1r2, C = −br1, Ei = r2fi − bfi+1,

D = {o,i=m−1
b2,i6=m−1

and Ã = −cr2, B̃ = r1r2, C̃ = −br1, Ẽi = r2fi − bfi+1,

D̃ = {o,i=m−1
−br2,i 6=m−1

ii. at the (k + 1)th iterate
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with Q = r1r2, R = −br1, S = b2, Ti = r2fi − bfi+1,
P̃ = {o,i=1

c2,i6=1

and Q̃ = −cr1, R̃ = Q̃ = r1r2, S = −br2, T̃i = −cfi + r2fi+1,
All the equations are not dependent on every point i− 1, i and i + 1 event for every time step.
This is the advantages to create the parallel algorithm for AGE.

Furthermore, Conjugate Gradient algorithm (CG) is exploited to accelerate the convergence
and efficiency of of IADE and AGE iterations. If rk = b−Axk is residual vector at level k and
if A is symmetric matrix (m×m) end positively defined, the CG algorithm is as follows,

i. pk ← Adk

ii. xk+1 ← xk + αkdk, αk =
rT

k rk

dT
k pk

iii. rk+1 ← rk − αkpk,

iv. dk+1 ← rk+1 + βkdk, βk =
rT

k+1rk+1

rT
k rk

(10)



if x0 is initial value x and d0 = r0 = b − Ax0 is initial value r and d. A few type of CG
algorithms is created by chosen the value of acceleration parameter αk and βk. The chosen
normal value of acceleration parameter [Reid(1971)] is,

αk =
dT

k rk

pT
k dk

end βk =
−pT

k rk+1

pT
k dk

The first step, the IADE CG Algorithms is executed by using the equation (5) and sweeps along
the domain Ω. The second step, executes CG algorithms by using the equation (10)(i − iv)
. These two steps are continued until a specified convergence criterion is satisfied, when the

requirement |u(k−1)
i,j − u

(k)
i,j | ≤ ε is met and ε becomes the convergence criterion. The accuracy

of the solution at these grid points was determined by computing its root means square error.
For an introduction to conjugate gradient acceleration of iterative methods, see Hageman and
Young (1981).

4.0 Parallel IADE CG Algorithms

1. IADE CG Michell-Fairweather
The IADE CG Michell-Fairweather which is fully explicit is derived to produce the approx-
imation of grid-i and which is not totally dependent on the grid (i − 1) and (i + 1). The
approximation at the first and second intermediate levels are computed directly by inverting
(rI + G1) and (rI + G2). The explicit form of equation (3) and (4) is given by

u(k+ 1
2
) = (rI + G1)

−1(rI − gG2)u
(k) + f (11)

u(k+1) = (rI + G2)
−1(rI − gG1)u

(k+ 1
2
) + gf (12)

In the first step, IADE CG Michell-Fairweather implements the equations (11) and (12) and
the second step, exploits the CG algorithm as in equation (10)(i− iv)

The parallel IADE CG Michell-Fairweather is executed by decomposing the m grid into m
p

groups of grid and assigning the groups into p processors. For example if G1, G2, ..., Gm
p

are

the groups of grid and p1, p2, ..., pp are the processors, the Gi, i = 1, 2, ..., m
p

are assigned to
pj, j = 1, 2, ..., p.

2. IADE CG Red Black
In IADE CG Red Black strategy, the domain Ω is decomposed into two different subdomains
ΩH and ΩM . ΩH is the approximate solution on the odd grids and ΩM is the approximate solu-
tion on the even grids. Computation on ΩH is executed followed by ΩM . These two subdomains
are not dependent on each other. ΩH is decomposed into groups, H1, H2, ..., Hm

p
and ΩM is

decomposed into groups, M1,M2, ..., Mm
p
. Every group of Hi and Mi, i = 1, 2, ..., m

p
is assigned

to processors p . IADE CG Red Black is run in parallel for each subdomain in alternating way
on time steps (k + 1

2
) and (k + 1). The parallel IADE CG Red Black formulae for (3) and (4)

are as follows,
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ii. at the (k + 1)th iterate
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and acceleration parameter ω = 1.
The next step, exploits the CG algorithm as in equation (10)(i− iv)

3. IADE CG RBSOR
Using the well-known fact of the IADE CG Red Black, the parallel algorithm for IADE CG
RBSOR takes the form similar to IADE CG Red Black but the acceleration parameter ω was
chosen to provide the most rapid convergence.

4. IADE CG Multicoloring
By the definition of multidomain, domain Ω is decomposed into w different groups. IADE CG
Multicoloring is an advanced concept of IADE CG Red Black. If w = 2, then IADE CG
Multicoloring is equaled to IADE CG Red Black.

The Domains for colors 1, 2, 3, ..., w are noted as Ωw1 , Ωw2 , ..., Ωww . The subdomain Ωwi is
distributed into different groups of grid Wi1,Wi2, ..., Wi m

wp
, where i = 1, 2, ..., w. In the process

of assignment, Wij, i = 1, 2, ..., w and j = 1, 2, ..., m
wp

are mapped into the processors p in the

alternating way.
At each time step, the computational grid for domain Ω started its execution with level Ωw1 ,

followed by level Ωw2 and ends with level Ωww . The next step, exploits the CG algorithm as in
equation (10)(i− iv)

5. IADE CG vector
On the vector iteration strategy, the parallel IADE CG is run in two convergence sections. The
first section is at the (k + 1

2
) time step and the second section is the (k + 1) time step. This

method converges if the inner convergence criterion is achieved for each section. The inner
convergence criterions ε(k+ 1

2
) and ε(k+1) are definite global convergence criterion ε.

The CG algorithm as in equation (10)(i − iv) is attained before the examination of global
convergence criterion.

6. IADE CG Incomplete Block LU
On the strategy of Incomplete Block LU preconditioners on slightly overlapping subdomains,
the domain Ω is decomposed into p processors with incomplete subdomain Ω. This strategy
used the incomplete factorization with parameter β and δ of algebraic boundary condition as
follows,
i. at the (k + 1

2
)th iterate

ki−2u
Q
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Q
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Q
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Q
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ii. at the (k + 1)th iterate

di−1u
R
i−1 + hi−1u

R
i = fi−1



The CG algorithm as in equation (10) (i − iv) is attained after the execution of IADE CG
Incomplete Block LU.

5.0 Numerical experiments

The problem statement under consideration is based on one dimensional heat conductor equa-
tion.(Smith (1979))

∂U

∂t
=

∂2U

∂x2
, 0 ≤ x ≤ 1, 0 < t, (13)

subject to the initial condition, U(x, 0) = sin(π, x), 0 ≤ x ≤ 1
and the boundary condition, U(0, t) = U(1, t) = 0, 0 < t ≤ 1

6.0 Experiment Result And Parallel Performances

This paper presents the numerical properties of the parallel solver on the homogeneous archi-
tecture of 12 PC systems with Linux operating, Intel Pentium IV processors, speedup 20GB
HDD and connected with internal network Intel 10/100 NIC. The following definitions are used
to measure the parallel algorithms in term of speedup,efficiency and effectiveness.

Speedup ratioSp =
T1

Tp

(14)

EfficiencyCp =
Sp

p
(15)

EffectivenessFp =
Sp

Cp

(16)

where Cp = pTp, T1 is the execution time on a serial machine and Tp is the computing time
on a parallel machine with p processors. Gauss Seidel Red Black is chosen as the control
scheme. The number of iterations, the rmse, the maximum rmse, the maximum error and the
execution time cost in sequential algorithms are shown in Figure 1. As shown in the figure 1 ,
the sequential IADE CG, AGE CG and IADE CG Michell-Fairweather take the same number
of relaxations to reach the convergence criterion ε with the minimum execution time. With
domain decomposition, the implementation of parallel strategies, IADE CG Incomplete block
LU, IADE CG Red Black, IADE CG Red Black SOR, IADE CG Multicoloring and IADE CG
vector are increased in the number of relaxations and the execution time. The convergence
rates, the rmse, the maximum rmse and the maximum error of all the sequential algorithms
are slightly similar.

Figure 2 shows the execution time vs. number of processors. As expected, the computation
time decreases with the increasing p. The 3 categories of the parallel algorithms indicated the
best execution time in the following arrangement,
1. AGE CG and IADE CG Incomplete Block,
2. IADE CG Red Black SOR and IADE CG Red Black,
3. IADE CG Multicoloring and IADE CG Vector
Using this control scheme , IADE CG Michell-Fairweather and IADE CG vector are not suitable
to be implemented as the parallel algorithms scheme for IADE CG . It involves high compu-
tational cost and communication cost. All the parallel algorithms for these categories have a



better execution time compared to their sequential algorithms as the number of processors are
increased.

Figure 3 shows the speedup plotted against the number of processors p. As observed from
the experiment, a nice speedup can be obtained for all applications with 12 processors except
for IADE CG Michell-Fairweather. The reductions in execution time often becomes smaller
when a large number of processors is used. This phenomenon as stated in Amdahl’s law,
indicates that the number of processors increases, the communication cost (e.g., the latency for
massage passing) and the cost for global operations will eventually become dominant over local
computation cost after a certain stage.

The IADE CG Multicoloring, IADE CG Red Black and IADE CG Red Black SOR are good
in terms of speedup and efficiency where data decomposition is run asynchronously and concur-
rently at every time step. AGE CG and IADE CG Incomplete Block allow for inconsistencies
due to load balancing when the extra computation cost is needed for boundary condition.
From equation (14) to equation (16),

Fp =
Sp

pTp

=
Ep

Tp

=
EpSp

T1

which shows that Fp measure both speedup and efficiency. Therefore, a parallel algorithm is
said to be effective when it maximizes Fp hence, FpT1(= SpEp). The optimal performance of
the effectiveness could be obtained when more than 12 processors are used. Figure 4 shows the
best effectiveness in the following order,
1. IADE CG Incomplete Block,
2. AGE CG
3. IADE CG Red Black
4. IADE CG Red Black SOR
5. IADE CG Vector
6. IADE CG Multicoloring

7.0 Conclusion

Conjugate Gradient (CG) can be regarded as a very efficient technique to increase the conver-
gent and efficiency of these two iteration methods. The stable and high accuracy of IADE CG
Incomplete Block is found to be an alternative parallel algorithm for IADE CG on PVM. All
the parallel algorithms maintained the accuracy of the sequential IADE CG algorithms. Par-
allel AGE CG is inherently explicit, the domain decomposition strategy is efficiently utilized,
straightforward to implement on PVM. These parallel algorithms is available to be implemented
on heterogeneous architecture cluster of workstations. The experiment proved that the com-
munication and computing times affect the speedup ratio, efficiency and effectiveness for the
number of processors p. Therefore, we reach the conclusion that these parallel algorithms gets
better efficiencies when it is implemented on a cluster workstations for solving a large-scale
problems.
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method AGE IADE LU RBSOR RB MULTI MF VECTOR GSRB

time (ms) 49.743 40.2641 50.4327 124.5471 126.1464 205.9478 1896.65 261.0082 156.4432

iterations 250 252 305 362 363 362 252 252 600

rmse 1.5921E-09 1.5921E-18 1.5921E-09 1.5921E-16 1.5921E-09 1.5921E-09 1.5921E-18 1.5921E-09 1.5921E-09

max_error 1.1102E-16 3.3307E-16 4.4409E-16 2.2204E-16 3.7921E-16 4.2306E-16 3.3307E-16 3.3307E-16 1.11E-16

sqr_error 1.9846E-07 1.9793E-07 1.9846E-07 1.9846E-07 1.9846E-07 1.9846E-07 1.9793E-07 1.9846E-07 1.9846E-07

ave_rmse 5.3374E-17 5.3374E-17 5.3374E-17 5.3374E-17 5.3374E-17 5.3374E-17 5.3374E-17 5.3374E-17 5.3374E-17

m 720003 720003 720003 720003 720003 720003 720003 720003 720003

dx 1.3889E-06 1.3889E-06 1.3889E-06 1.3889E-06 1.3889E-06 1.3889E-06 1.3889E-06 1.3889E-06 1.3889E-06

dt 9.6450E-13 9.6450E-13 9.6450E-13 9.6450E-13 9.6450E-13 9.6450E-13 9.6450E-13 9.6450E-13 9.6450E-13

tt 4.8225E-11 4.8225E-11 4.8225E-11 4.8225E-11 4.8225E-11 4.8225E-11 4.8225E-11 4.8225E-11 4.8225E-11

lamda 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

teta 1 1 1 1 1 1 1 1 1

round 50 50 50 50 50 50 50 50 50

r 0.8 0.8 1.1 1.3 1.29 0.98 0.8 0.9 -

ry - - - 1.1 1 0.92 - - -

rz - - - 1 1 1.09 - - -

tol 1.0000E-15 1.0000E-15 1.0000E-15 1.0000E-15 1.0000E-15 1.0000E-15 1.0000E-15 1.0000E-15 1.0000E-15

tol_y - - - - - - - 1.0000E-15 -

tol_z - - - - - - - 1.0000E-15 -

1038+890

Figure 1 Sequential algorithms for IADE
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